Abstract

In the current work, the optimal factors are selected to achieve the improvements in the energy consumption (EB), power factor (PB), decreased roughness (DR) and improved surface hardness (IH) for the roller burnishing operation. The process inputs are the burnishing speed (V), the feed (f), and the depth (d). A hybrid approach comprising the principal component analysis and Technique for Order of Preference by Similarity to Ideal Solution was used to explore the weight values of burnishing performances and select the optimum parameters. Moreover, another optimization technique employing the response surface method and archive-based micro-genetic algorithm was adopted to identify the optimal outcomes in the continuous domain. The main findings showed the performances measured are primarily affected by the burnishing feed, depth and speed, respectively. The energy consumption and roughness are approximately decreased by 31.46% and 7.41%, while the power factor and hardness are improved by 17.47% and 43.09%, respectively, as compared to the general process. The outcomes and findings of the investigated work can be used for further research in sustainable design and manufacturing as well as directly used in the knowledge-based and expert systems for burnishing applications in industrial practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.