Abstract

The prospects of using biopolymer nano-containing films for wound healing were substantiated. The main components of biopolymer composites are gelatin, polyvinyl alcohol, glycerin, lactic acid, distilled water, and zinc oxide (ZnO) nanoparticles (NPs). Biopolymer composites were produced according to various technological parameters using a mould with a chrome coating. The therapeutic properties of biopolymer films were evaluated by measuring the diameter of the protective effect. Physico-mechanical properties were studied: elasticity, vapour permeability, degradation time, and swelling. To study the influence of technological parameters of the formation process of therapeutic biopolymer nanofilled films on their therapeutic and physico-mechanical properties, the planning of the experiment was used. According to the results of the experiments, mathematical models of the second-order were built. The optimal values of technological parameters of the process are determined, which provide biopolymer nanofilled films with maximum healing ability (diameter of protective action) and sufficiently high physical and mechanical properties: elasticity, vapour permeability, degradation time and swelling. The research results showed that the healing properties of biopolymer films mainly depend on the content of ZnO NPs. Degradation of these biopolymer films provides dosed drug delivery to the affected area. The products of destruction are carbon dioxide, water, and a small amount of ZnO in the bound state, which indicates the environmental safety of the developed biopolymer film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.