Abstract
In recent years, the backward trajectory model has been widely used in the research of meteorological and atmospheric environmental quality. This paper presents a comprehensive study on a stepwise clustering analysis algorithm in the clustering process of backward trajectory model and an application of the clustering analysis of single-particle backward trajectory in 2016 in Changchun City. This study starts with an analysis of the original stepwise clustering algorithm and its application to a clustering process of 8784 backward trajectories during 48 h in Changchun City as a benchmark test case. Then, two improvements are made in the algorithm: First, in the process of finding the optimal classification, the algorithm complexity is improved from original O(n3) to O(log(n)*n2) through algorithm improvement. The algorithm performance is enhanced by log(n) times. Second, in the process of re-establishing the classification, the algorithm complexity is improved from the original O(m*n2) to O(m*log(n)*n), that is another algorithm performance improvement by a factor of log(n). Therefore, the accumulative execution efficiency improvement through the algorithm optimization is 2*log(n) times, which has been further verified in the practical application in Changchun City.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.