Abstract

Abstract This study focuses on an optimization of start-up operating conditions of a rapid pressure swing adsorption (RPSA) process, which is operated in a cyclic pressure variation mode. The objective function is defined not only to reduce the operating power but also to shorten the time to reach the cyclic steady state (CSS), as well as to increase the purity of the desired product at CSS. A general mathematical model considering the dynamic variation and spatial distribution of properties within the bed has been formulated and described by a set of integrated partial differential algebraic equations (IPDAE). The number of variables for optimization is 16 825 and both the single discretization of a spatial domain and the double discretization of spatial/time domains have been used for the numerical integration. As the computation result the optimal cycle time is 14.46 s and the optimal feed pressure is 597 kPa. Under the optimal condition the purity of desired product at CSS is calculated as 96.42% and the CSS convergence time is 5857 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.