Abstract

Methods for optimizing the dye labeling, laser excitation, and data analysis for single-molecule fluorescence burst detection of ds-DNA have been developed and then validated through capillary electrophoresis (CE) separations of 100–1000 basepair (bp) DNA. Confocal microscopy is used to observe fluorescence bursts from individual DNA fragments labeled with the intercalation dye TO6 as they pass through the ∼ 2-μm-diameter focused laser beam. The dye concentration and laser power were optimized by studying fluorescence burst intensities from pBluescript DNA fragments. The optimal TO6 concentration was ≤100 nM, and the optimal laser power was ≤1 mW. Single-molecule counting was then used to detect CE separations of a 100–1000 bp DNA sizing ladder in 3% linear polyacrylamide. Discrete and baseline-resolved fluorescence bursts were observed in bands as small as 100 bp, and the average burst size within each band increased linearly with fragment size. By counting events using a single optimally chosen discriminator level, we achieve maximum signal-to-noise ratio (S/N) for each fragment size. If the discriminator level is ramped linearly with fragment size to achieve a constant detection efficiency, then the number of events properly reflects the relative fragment concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.