Abstract
ABSTRACTExperimental and simulated P and As dopant diffusion profiles in Si:C epi films containing high C (>1 atomic %) are presented. A new set of physical effects were incorporated to accurately model P or As diffusion in the presence of high level of C. Evolution of substitutional C (Csub) profile in the Si:C epi film through dopant implant and activation anneal was characterized by high-resolution x-ray diffraction (HRXRD) technique. Three-layer analysis was utilized to obtain non-uniform Csub profile. Dependency of Csub retention on anneal thermal budget is studied. It is shown the initial Csub in the epi layer is lost during dopant implantation and conventional spike anneal sequence. Use of advanced millisecond (ms) laser anneal resulted in near 100% Csub retention in P-implanted Si:C epi film without compromising junction depth. Measured Csub (by HRXRD) and total C (by SIMS) profiles are compared with the ones predicted by the newly developed compact modeling in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.