Abstract
Using protein fusion partners for in vitro translation may increase solubility, assist in purification, or allow detection of small proteins and peptides. Here we show that the molar yield of peptide in a batch reaction may be maximized by optimizing the length of the translated product, which is composed of the fusion partner plus the peptide. Using truncated versions of GFP as a series of fusion partners, the molar yield increased approximately 3-fold as the length of the translated product was reduced from 250 to 100 amino acids. When the translated product was shortened below roughly 100 amino acids, molar yield fell as a result of proteolysis. This trend was verified using two fusion partners with different amino acid sequences. Furthermore, protease inhibitors were used to confirm that proteases were responsible for limiting accumulation of peptides below the optimal length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.