Abstract

Microalgae biomass has been consumed as animal feed, fish feed and in human diet due to its high nutritional value. In this experiment, microalgae specie of Chlorella Vulgaris FSP-E was utilized for protein extraction via simple sugaring-out assisted liquid biphasic electric flotation system. The external electric force provided to the two-phase system assists in disruption of rigid microalgae cell wall and releases the contents of microalgae cell. This experiment manipulates various parameters to optimize the set-up. The liquid biphasic electric flotation set-up is compared with a control liquid biphasic flotation experiment without the electric field supply. The optimized separation efficiency of the liquid biphasic electric flotation system was 73.999±0.739% and protein recovery of 69.665±0.862% compared with liquid biphasic flotation, the separation efficiency was 61.584±0.360% and protein recovery was 48.779±0.480%. The separation efficiency and protein recovery for 5 × time scaled-up system was observed at 52.871±1.236% and 73.294±0.701%. The integration of simultaneous cell-disruption and protein extraction ensures high yield of protein from microalgae. This integrated method for protein extraction from microalgae demonstrated its potential and further research can lead this technology to commercialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.