Abstract

A modified differential evolution algorithm (MDE) has been used for solving different process related design problems (namely calculation of the NRTL and Two-Suffix Margules activity coefficient models parameters in 20 ternary extraction systems including different ionic liquids and reactor network design problem). The obtained results, in terms of root mean square deviations (rmsd) for these models are satisfactory, with the overall values of 0.0023 and 0.0170 for 169 tie-lines for NRTL and Two-Suffix Margules models, respectively. The results showed that the MDE algorithm results in better solutions compared to the previous work based on genetic algorithm (GA) for correlating liquid-liquid equilibrium (LLE) data in these systems. MDE also outperformed DE algorithm when tested on reactor network design problem with respect to convergence and speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.