Abstract
The antireflection properties of electrochemically formed porous silicon (PS) layers in the 0.3 μm thick n + emitter of Si p–n + junctions, have been optimized for application to commercial silicon photovoltaic cells. The porosity and thickness of the PS layers are easily adjusted by controlling the electrochemical formation conditions (current density and anodization time). The appropriate PS formation conditions were determined by carrying out a two steps experiment. A first set of samples allowed to determine the optimal porosity and a second one to adjust the thickness of the PS layers, by evaluating the interference features of the reflectance produced by the layers. A PS layer with optimal antireflection coating (ARC) characteristics was obtained in 30% HF in only 3.5 s. The effective reflectance is reduced to 7.3% between 400 and 1150 nm which leads to a gain of up to 33% in the theoretical short circuit current of a p–n + shallow junction compared to a reference junction without a PS layer. The effective reflectance with optimized PS layers is significantly less than that obtained with a classical TiO 2 ARC on a NaOH pretextured multicrystalline surface (11%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.