Abstract

In this article, response surface methodology (RSM) was used to obtain optimum conditions for removal of p-nitrophenol (PNP) by UV/H2O2 process using spinning disk photoreactor (SDP). For this purpose, the effect of five independent variables, the initial concentration of PNP, the initial concentration of H2O2, pH, solution volume, and irradiation time on the PNP removal percent, was investigated. Central composite design, one of the response surface techniques used for process optimization. The results showed a good agreement between the RSM predicted and experimental data with “R2” and “Adjusted R2” of 0.9692 and 0.9480, respectively. In addition, “Predicted R2” of 0.8909 is in reasonable agreement with “Adjusted R2” of 0.9488. At optimal conditions, that is, PNP concentration of 20.78 mg L−1, H2O2 concentration of 1355.83 mg L−1, solution volume of 566.08 mL, irradiation time of 12.30 min, and pH of 4.59 the removal percent predicted by RSM is 100% which has good correspondence with its experimental value (98.67%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.