Abstract
We develop a theory to address the non equilibrium dynamics of phonons in a one-dimensional finite size trapped ion system for non linear ramp and periodic protocols. Our analysis, which is based on our earlier proposal of dynamics-induced cooling and entanglement generation between phonons in these systems when subjected to a linear ramp protocol [], identifies the optimal protocol within the above-mentioned classes, which minimizes both the cooling and entanglement generation time. We also introduce single-/two-site addressing to achieve cooling/entanglement, which is expected to lead to simpler implementation of these protocols. Finally, we discuss the effect of noise due to the fluctuation of the intensity of the laser used to generate the trap on entanglement generation. We also discuss realistic experimental setups that may serve as test beds for our theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.