Abstract

Musculoskeletal models use wrapping objects to constrain muscle paths from passing through anatomical obstacles; however, the selection of wrapping object parameters is typically a manual, iterative, and time-consuming process. The purpose of this study was to use a data-driven optimization algorithm to determine wrapping object parameters. Wrapping parameters were determined using simulated annealing for two cases: (1) modeling the triceps at the elbow using a cylindrical wrapping object, and (2) modeling the middle deltoid using a spherical wrapping object. It was found that an optimization algorithm could be used to determine wrapping object parameters which produced moment arms that were similar to experimental data. The greatest benefit of this method is the efficiency at which model parameters were determined, thus eliminating much of the time required to manually refine the wrapping objects. Model development could be further improved by extending this method to other model parameters and combining various optimization techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.