Abstract

BackgroundThe extraction of bioactive compounds from herbal materials requires optimization in order to recover the highest active dose. Response surface methodology was used to optimize variables affecting the microwave extraction of zerumbone from Zingiber zerumbet using the Box–Behnken design. The influence of variables, such as ethanol concentration (X1), microwave power (X2), irradiation time (X3), and liquid-to-solid ratio (X4), on the extraction of zerumbone was modeled using a second-order regression equation. The antiproliferative activity of optimized and non-optimized extracts was evaluated against the HeLa cancer cell line using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.ResultsTwo linear parameters, X1 and X4, and their quadratic parameters were highly significant at the P < 0.01 level. Two interaction parameters, X1X4 and X2X3 were significant, whereas interactions of X1X2, X1X3, X2X4 and X3X4 were insignificant (P > 0.05). The optimum microwave extraction conditions were as follows: ethanol concentration, 44%; microwave power, 518 W; irradiation time, 38.5 s; and liquid-to-solid ratio, 38 mL/g. Under these conditions, the maximum zerumbone yield was 5.88 mg/g DM, which was similar to the predicted value (5.946 mg/g DM). Optimized and non-optimized Z. zerumbet rhizome extracts exhibited significant antiproliferative activity against HeLa cancer cells, with half-maximal inhibitory concentration (IC50) values of 4.3 and 7.8 μg/mL, respectively, compared with 1.68 μg/mL for the anticancer drug cisplatin. When the extract concentration increased from 4.3 to 16.0 μg/mL, the inhibition of cancer cell growth increased from 50.0 to 79.5%.ConclusionsIn this study, the optimized microwave protocol developed for extracting zerumbone from Z. zerumbet was faster and consumed less solvent than previous methods, while improving and enhancing the antiproliferative activity.

Highlights

  • The extraction of bioactive compounds from herbal materials requires optimization in order to recover the highest active dose

  • The aim of this study is to consider the effect of different extraction methods and solvents on the zerumbone content extracted from Z. zerumbet rhizome, and optimize the selected extraction method using response surface methodology

  • Plant sampling Rhizomes of Z. zerumbet were collected from the Universiti Putra Malaysia (UPM) glasshouse complex, where they had been grown using a plantation method described in our previous report [1]

Read more

Summary

Introduction

The extraction of bioactive compounds from herbal materials requires optimization in order to recover the highest active dose. Response surface methodology was used to optimize variables affecting the microwave extraction of zerumbone from Zingiber zerumbet using the Box–Behnken design. Herbs and spices produce a large number of phytochemicals, and have been used as food preservatives, flavorings, and traditional medicines for thousands of years. Z. zerumbet is a traditional folk remedy and reportedly possesses various phytochemicals and secondary metabolites with antitumor [2], antioxidant [3], antipyretic, analgesic, [4], antibacterial [5], anti-inflammatory, antiallergic [6], and antihypersensitive [7] activities. With a lot of medicinal benefit of zerumbone it seems that optimization of extraction process of this compound from Zingiber zerumbet L. With a lot of medicinal benefit of zerumbone it seems that optimization of extraction process of this compound from Zingiber zerumbet L. (the only natural source of zerumbone) is necessary

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.