Abstract
The properties of silver nanoparticles (AgNPs) are affected by various parameters, making optimisation of their synthesis a laborious task. This optimisation is facilitated in this work by concurrent use of a T-junction microfluidic system and machine learning approach. The AgNPs are synthesized by reducing silver nitrate with tannic acid in the presence of trisodium citrate, which has a dual role in the reaction as reducing and stabilizing agent. The study uses a decision tree-guided design of experiment method for the size of AgNPs. The developed approach uses kinetic nucleation and growth constants derived from an independent set of experiments to account for chemistry of synthesis, the Reynolds number and the ratio of Dean number to Reynolds number to reveal effect of hydrodynamics and mixing within device and storage temperature to account for particle stability after collection. The obtained model was used to define a parameter space for additional experiments carried out to improve the model further. The numerical results illustrate that well-designed experiments can contribute more effectively to the development of different machine learning models (decision tree, random forest and XGBoost) as opposed to randomly added experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.