Abstract

In this work, the problem of optimization of low-thrust reconfiguration maneuvers for spacecraft flying in formation is addressed. The problem is stated as the solution of an optimal control problem in which an objective function related to controls is minimized, satisfying a series of constraints on the trajectory that are both differential and algebraic. The problem has been faced by transcribing the differential constraints into a nonlinear programming problem with a parallel multiple-shooting method. The resulting problem has been solved with an interior point method. The method that has been developed is particularly suited for the solution of problems in which the trajectory is constrained with a great number of inequalities on both states and controls. The method has been applied to the design of reconfiguration maneuvers for spacecraft flying in formation, for which the collision avoidance issue leads to the imposition of a large number of inequalities on states derived from the minimum distance constraint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.