Abstract

Photon counting lidar signals generally require smoothing to suppress random noise. While the process of reducing the resolution of the profile reduces random errors, it can also create systematic errors due to the smearing of high gradient signals. The balance between random and systematic errors is generally scene dependent and difficult to find, because errors caused by blurring are generally not analytically quantified. In this work, we introduce the use of Poisson thinning, which allows optimal selection of filter parameters for a particular scene based on quantitative evaluation criteria. Implementation of the optimization step is relatively simple and computationally inexpensive for most photon counting lidar processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.