Abstract

Objective: The objective of this study was to develop a robust Liquid Chromatography – Tandem Mass Spectrometry (LC-MS/MS) methodology for the precise quantification of metformin and rosiglitazone in human plasma. Methods: A Design of Experiments (DOE) framework was utilized, specifically employing a Box-Behnken experimental design, to optimize critical parameters such as Capillary voltage, Cone voltage, Desolvation temperature, and Collision energy. Sample preparation involved protein precipitation using acetonitrile, simplifying the procedure. Chromatography was performed with a mobile phase of 0.1% formic acid and acetonitrile (60:40 V/V) to enhance sensitivity and reproducibility. Quantification was achieved through Multiple Reaction Monitoring (MRM) of the transition’s m/z 130.1 → m/z 60.1 for metformin, m/z 358.2 → m/z 134.9 for rosiglitazone, and m/z 206.3 → m/z 59.9 for phenformin. The methodology was validated according to regulatory guidelines. Results: The developed methodology demonstrated selectivity, linearity, accuracy, precision, recovery, and stability. The calibration curve showed linearity over the concentration range of 5 ng/ml to 1000 ng/ml for metformin and 1.5 ng/ml to 300 ng/ml for rosiglitazone. Accuracy and precision were within acceptable limits across calibration and quality control standards. Assessments of extraction recovery and matrix effects confirmed the robustness of the extraction procedure, with negligible interference from plasma components. Stability studies indicated that the method maintained acceptable limits for metformin and rosiglitazone concentrations under various storage and handling conditions. Conclusion: The validated Liquid Chromatography – Tandem Mass Spectrometry (LC-MS/MS) methodology provides a reliable and accurate platform for the quantification of metformin and rosiglitazone in human plasma. This method shows potential applications in pharmacokinetic studies and clinical research, ensuring consistent performance in routine analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.