Abstract

Grayscale lithography (GSL) is an alternative approach to the standard binary lithography in MEMS fabrication, enabling the fabrication of complicated, arbitrary 3D structures on a wafer without the need for multiple masks and exposure steps. Despite its advantages, GSL's effectiveness is highly dependent on controlled lab conditions, equipment consistency, and finely tuned photoresist (PR) exposure and etching processes. This works presents a thorough investigation of the challenges of GSL for silicon (Si) wafers and presents a detailed approach on how to minimize fabrication inaccuracies, aiming to replicate the intended design as closely as possible. Utilizing a maskless laser writer, all aspects of the GSL are analyzed, from photoresist exposure parameters to Si etching conditions. A practical application of GSL is demonstrated in the fabrication of 4-μm-deep f#/1 Si Fresnel lenses for long-wave infrared (LWIR) imaging (8-12 μm). The surface topography of a Fresnel lens is a good case to apply GSL, as it has varying shapes and size features that need to be preserved. The final fabricated lens profiles show a good match with the initial design, and demonstrate successful etching of coarse and fine features, and demonstrative images taken with an LWIR camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.