Abstract

Background/Objectives: The present investigation guides through the design, analysis and material selection process of Subaru EJ25D gasoline engine flywheel to reduce the weight of the flywheel without compromising its performance. Methods/Statistical Analysis: The flywheel was modeled using 3D modeling software Solid works. The validation of the strength of the flywheel was done by calculating and applying the forces on the flywheel using ANSYS software. The Finite Element Analysis (FEA) was conducted by considering the centrifugal forces acting on the flywheel. Structural analysis of the flywheel was done to validate the use of the alternate materials for constructing the flywheel. A comparative analysis of the stresses, total deformation and safety factor of the flywheel made of cast iron, titanium alloy, E-glass and aluminium alloy was reported. Findings: Based on the analysis, Aluminium alloy was found to be the most suitable material for constructing the flywheel. Specific tensile strength was considered for selection of the alternate materials of the flywheel. This paper also demonstrated the feasibility of using non-conventional materials like composite for manufacturing flywheels. Applications/Improvements: Flywheels which are a commonly used part in automobiles are subjected to multiple varying stress cycles which ultimately can lead to its failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.