Abstract

Background: The recovery of phenolic compounds is seen as an arduous task because phenolic compounds are available as free aglycones, as sugar or ester conjugates, or as polymers with several monomeric components. Furthermore, phenolic compounds do not disperse evenly and may be connected to cell walls, carbohydrates, or proteins. This study looks at the optimization of factors that affect the efficiency for the extraction of phenolic compounds from the stem-bark of Funtumia elastica. Methods: Five independent variables (solvent concentration, time, the temperature, solid-liquid ratio, and pH) of the extraction process were selected. Single factor analysis as well as the response surface method was used to evaluate the impact of the selected factors on the total phenolic content. The effect of the extraction factors on the phenolic content was statistically significant (p <0.05). For the response surface method, a five/factor, five/level central composite design used, and a fitted second-order polynomial regression model equation was used to show how the extraction parameters affected the total phenolic recovery. Results: The predicted value (R² of 0.5917) agreed with the adjusted value (R² of 0.7707). The residuals for response predictions were less than 5%. The optimal factors for the extraction were ethanol concentration of 75.99% v/v, extraction time of 193.86 minutes, temperature of 63.66°C, pH of 5.62, and solid-liquid ratio of 1:21.12 g/mL. Actual overall content of the phenolic compounds was validated at 82.83 ± 3.335 mg gallic acid equivalent (GAE) /g weight of extract, which agreed with the predicted response of 89.467 mg GAE/g of the dried extract under the optimal factors. Conclusions: The rich phenolic content of stem-bark of Funtumia elastica points to its potential as a functional medicinal product to alleviate diseases caused by oxidative stress such as asthma, breathing disorders, inflammation, and cardiovascular diseases.

Highlights

  • Phenolic compounds are naturally produced in plants for UV radiation protection, attracting pollinators and preventing microbial infections, etc.[1]

  • The recovery increased with an increased ethanol concentration and reached a maximum at 60% ethanol (79.062 ± 0.691 mg gallic acid equivalent (GAE)/g of dried extract, p

  • The results show that total phenolic content (TPC) is significantly (p

Read more

Summary

Introduction

Phenolic compounds are naturally produced in plants for UV radiation protection, attracting pollinators and preventing microbial infections, etc.[1]. The existence of diverse polyphenols acting as antioxidants facilitates the entrapment of free radicals spawned from various metabolic processes, thereby inhibiting the initiation of any cancerous cells[2] They exhibit anti-inflammatory, antimicrobial, cardio-protective, and antiaging activities[3,4]. For the response surface method, a five/factor, five/level central composite design used, and a fitted second-order polynomial regression model equation was used to show how the extraction parameters affected the total phenolic recovery. Actual overall content of the phenolic compounds was validated at 82.83 ± 3.335 mg gallic acid equivalent (GAE) /g weight of extract, which agreed with the predicted response of 89.467 mg GAE/g of the dried extract under the optimal factors. Conclusions: The rich phenolic content of stem-bark of Funtumia elastica points to its potential as a functional medicinal product to alleviate diseases caused by oxidative stress such as asthma, version 2 (revision)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.