Abstract

PurposeInvestigation for convective flow of water-based nanofluid (composed of ferric oxide asnanoparticles) by curved stretching sheet of variable thickness is made. Bejan number andentropy generation analysis is presented in presence of viscous dissipation, mixed convectionand porous medium.Design/methodology/approachIn this paper, by using NDSolve of MATHEMATICA, the nonlinear system of equations is solved. Velocity, temperature, Bejan number and entropy generation for involved dimensionless variables are discussed.FindingsIncrease in velocity is depicted for larger curvature parameter, and opposite trend is witnessed for higher nanoparticle volume concentration. Enhancement in temperature is seen for higher Eckert number while reverse behavior is noticed for larger curvature parameter. Entropy rate increases for variation of curvature parameter, Brinkman number and nanoparticle volume fraction. Bejan number decays for mixed convection and curvature parameters.Originality/valueTo the authors’ knowledge, there exists no study yet which describes flow by curved sheet of variable thickness. Such consideration with nanoparticles seems important task. Thus, the main objective here is to determine entropy generation in ferromagnetic nanofluid flow due to variable thickened curved stretching surface. Additionally, effects of Joule heating, porous medium, mixed convection and viscous dissipation are taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.