Abstract

Santalum album (L.) is a prized tropical tree species of high therapeutic and industrial importance. The wood of these naturally grown plants is extensively harvested to acquire therapeutically important metabolite santalol and be used for additional functions such as in wood statuette industries. Due to high demand, it is crucial to maintain a sufficient plant population. An easy protocol for establishing cell suspension culture initiated from the loose embryogenic callus mass of sandalwood was realized by shifting 6–8-week-old morphogenic calli acquired from the mature embryonic axis and cotyledon explant cultures in fluid media. The asynchronous embryogenic cultures were sloughed with clumps of flourishing cell clumps and embryos of various progressive phases along with diffident non-embryogenic tissues. The frequency of embryo proliferation was evidenced to determinethe expansion pace of embryogenic masses under diverse conditions. The intonation of initiation and creation of cell suspension was under the directive of the influence of exogenous plant growth regulators amended in the nutrient medium at different concentrations and combinations. Maximum relative growth rate (386%) and clumps/embryoids in elevated integers (321.44) were accomplished on MS nutrient medium fortified with 2.0 mg L−1 2,4-D in association with 0.5 mg L−1 BA and 30.0 g L−1 sucrose raised from mature embryonic axis-derived calli. Plantlet regeneration in higher frequency (84.43%) was evidenced on MS medium amended with 1.0 mg L−1 each of TDZ and GA3 in conjunction with 0.5 mg L−1 NAA and 20.0 g L−1 sucrose. Mature embryonic axis-derived calli were found to be constantly better than mature cotyledon-derived calli for raising profitable and reproducible cell suspension cultures. Regenerants displayed normal growth and morphology and were founded successfully in the external environment after hardening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.