Abstract

A method is proposed for the optimization of structural parameters of GaN/AlGaN quantum wells and Bragg-confined structures, with respect to peak intersubband absorption from the ground to the first excited electronic state in the mid and near infrared spectral range. It is based on the application of the Genetic Algorithm and delivers globally optimal structures with a preset number of embedded layers. Simple rectangular quantum well profile is investigated for the maximal Stark effect and applications to tunable mid-infrared photodetectors. In case of Bragg-confined structures, an above the barrier bound state is used to extend the range of transition energies above the values available in conventional quantum wells. The effects of band nonparabolicity are taken into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.