Abstract

AbstractAnaerobic digestion (AD) technology has become popular and is widely used due to its ability to produce renewable energy from wastes. The bioenergy produced in anaerobic digesters could be directly used as fuel, thereby reducing the release of biogas to the atmosphere. Due to the limited knowledge on the different process disturbances and microbial composition that are vital for the efficient operation of AD systems, models and control strategies with respect to external influences are needed without wasting time and resources. Different simple and complex mechanistic and data-driven modeling approaches have been developed to describe the processes taking place in the AD system. Microbial activities have been incorporated in some of these models to serve as a predictive tool in biological processes. The flexibility and power of computational intelligence of evolutionary algorithms (EAs) as direct search algorithms to solve multiobjective problems and generate Pareto-optimal solutions have also been exploited. Thus, this paper reviews state-of-the-art models based on the computational optimization methods for renewable and sustainable energy optimization. This paper discusses the different types of model approaches to enhance AD processes for bioenergy generation. The optimization and control strategies using EAs for advanced reactor performance and biogas production are highlighted. This information would be of interest to a dynamic group of researchers, including microbiologists and process engineers, thereby offering the latest research advances and importance of AD technology in the production of renewable energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.