Abstract

Purpose: The wide availability and reputation for accuracy of the single-photon emission computed tomography (SPECT) of the myocardium has made it a top global choice for nuclear cardiology procedures. The goal of this research is to determine the effectiveness and measurable accuracy of 3D iterative reconstruction algorithms compared to filtered back projection techniques for cardiac SPECT images. Effectiveness is determined by the ability of the various techniques to produce accurate cardiac SPECT images. Materials and Methods: A Siemens Symbia T16 SPECT/CT scanner was used to acquire SPECT/CT images and the Monte Carlo simulations whilst a GATE package was used with the implementation of Infinia™ (GE) dual head SPECT gamma camera–simulated data. The recordings were acquired from point and linear sources and a cardiac insert was created along with a simulation of a computerized phantom XCAT. Result: The results of this study demonstrated an improvement in image quality and the use of a Flash 3D algorithm relative to FBP technique enhances its accuracy. The data presented in this article further show that the image quality of myocardium images and quantification accuracy, particularly for high-resolution studies reconstructed using the Flash 3D algorithm, can be greatly affected by a respiratory-induced motion. Conclusion: Image quality and quantification accuracy can be better improved with respiratory-gating techniques, utilization of ordered-subsets maximization (OSEM) algorithms with attenuation and scatter correction. A simulation of respiratory-induced motion resulted in a reconstructed SPECT recording of 73% reduction in the quantified image resolution for Flash 3D and 43% for FBP. It also caused the underestimation for the left ventricle volume by 18% using FBP and 41% for the Flash 3D. In conclusion, our physical phantom studies and Monte Carlo simulation studies agree with the main hypothesis of our investigation. They showed improvement in image quality with increased accuracy when using the Flash 3D algorithm relative to the FBP technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.