Abstract

A fast regenerating Agrobacterium tumefaciens-mediated transformation protocol for Bacopa monnieri (L.) Wettst. was developed as a model system for heterologous expression of terpenoid indole alkaloid pathway genes from Catharanthus roseus (L.) G. Don. The direct regeneration of shoots from leaf explants co-cultured with A. tumefaciens resulted in the integration of a tryptophan decarboxylase (tdc) and strictosidine synthase (str) cassette ( ) in the regenerated progeny. The highest transformation efficiency (83.88%) was achieved when leaf explants were infected on the adaxial laminar surface by manual pricking with 48- to 72-h-old suspensions (OD600 = 0.5–0.6) of A. tumefaciens strain LBA1119 (carrying the binary vector pMOG22). The heterologous expression of tryptophan decarboxylase and strictosidine synthase genes that are otherwise not present in B. monnieri plants was confirmed through semi-quantitative PCR and metabolite quantification assays. The entire protocol duration from co-cultivation through regeneration of transgenic plants to their establishment in the glass house took 40–45 d. The developed B. monnieri model can be used to test expression cassettes carrying genes for plant secondary metabolic pathway engineering, especially those genes that are expressed in differentiated cell, tissue, or organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.