Abstract

The central issue in finance is how to select a portfolio in the financial market. The traditional artificial fish swarm algorithm (AFSA) is optimized in this paper, and the improved AFSA is used to solve the portfolio model. This model generates a uniform distribution operator using uniform distribution and combines it with the basic fish swarm algorithm. Uniform variation occurs when the variance of the optimal value of continuous convergence is within the allowable error. In this manner, the fish can escape the trap of the local extremum, obtaining the global optimal state. To validate the feasibility of improving AFSA, this paper conducts simulation experiments on portfolio problems using MATLAB tools. Experiments show that this model has an accuracy of 93.56 percent, which is 8.43 percent higher than that of the NSGA-II model and 3.76 percent higher than that of the multiobjective optimization model. The experiment shows that the algorithm in this paper can solve these types of problems well and that, using this model, the optimal portfolio investment decision scheme satisfying investors can be obtained. The optimized AFSA presented in this paper can serve as an important reference for investment portfolios and has a wide range of application possibilities in the investment market.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.