Abstract

Traditional transit systems are susceptible to unexpected costs and delays due to unforeseen events, such as vehicle breakdowns. The randomness of these events gives the appearance of an imbalance in the number of operating vehicles and of unreliable transit services. Therefore, this paper proposes the queueing theory as a means to characterize the state of any given transit system considering the risk of vehicle breakdowns. In addition, the proposed method is used to create an optimized model for reserve fleet sizes in transit systems, in order to ensure the reliability of the transit system and minimize the total cost of any transit system exposed to the risks of vehicle breakdowns. The optimization is conducted based on the two main characteristics of all bus systems, namely, operator costs and user costs, in both normal and disruptive situations. In addition, the situations in our optimization are generated in scenarios that have a certain degree of probability of experiencing delays. This paper formulates such an optimization model, presents the formulation solution method, and proves the validity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.