Abstract

As it is tough for the current energy absorb devices of urban vehicles to meet the crashworthiness requirements in the collision scenario of 25km/h, a methodology to improve the general crashworthiness is presented. A multi-criteria optimization, with the deformations and accelerations of all cars as the design functions and the force characteristics of end structures of cars as design variables, is defined and the Pareto Fonts are obtained. Then defining energy absorbed as design function, a single criteria optimization is made and the specific goal is achieved. No explicit relationship could be found between the design variables and the design functions, so a crash model of a train with velocity of 25km/h colliding to another train stopped is built and the genetic algorithm is chosen to solve the optimization problems. The results indicate that the crashworthiness performance of the trains is significantly improved and the crashworthiness requirements could be reached finally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.