Abstract

The coplanar-grid charge-sensing technique is a powerful method to achieve excellent spectroscopic performance with large-volume, CdZnTe-based, gamma-ray detectors despite the poor charge transport characteristics of the CdZnTe material. Critical to the success of the technique are the charge induction characteristics of the sensing-grid electrodes as governed by the detector geometry and the grid design. In this paper we demonstrate through numerical calculations of the detector response that the criteria for optimizing the grid design depend on the particular method in which the coplanar-grid technique is implemented. We present the fundamental design criteria in terms of the desired charge induction on the grid electrodes for the commonly used coplanar-grid implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.