Abstract

Region-of-interest (ROI) and interior reconstructions for computed tomography (CT) have drawn much attention and can be of practical value for potential applications in reducing radiation dose and hardware cost. The conventional wisdom is that the exact reconstruction of an interior ROI is very difficult to be obtained by only using data associated with lines through the ROI. In this study, we propose and investigate optimization-based methods for ROI and interior reconstructions based on total variation (TV) and data derivative. Objective functions are built by the image TV term plus the data finite difference term. Different data terms in the forms of L1-norm, L2-norm, and Kullback–Leibler divergence are incorporated and investigated in the optimizations. Efficient algorithms are developed using the proximal alternating direction method of multipliers (ADMM) for each program. All sub-problems of ADMM are solved by using closed-form solutions with high efficiency. The customized optimizations and algorithms based on the TV and derivative-based data terms can serve as a powerful tool for interior reconstructions. Simulations and real-data experiments indicate that the proposed methods can be of practical value for CT imaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.