Abstract

Abstract This article discusses how to use optimization-based methods to efficiently operate microgrids with a large share of renewables. We discuss how to apply a frequency-based method to tune the droop parameters in order to stabilize the grid and improve oscillation damping after disturbances. Moreover, we propose a centralized real-time feasible nonlinear model predictive control (NMPC) scheme to achieve efficient frequency and voltage control while considering economic dispatch results. Centralized NMPC for secondary control is a computationaly challenging task. We demonstrate how to reduce the computational burden using the Advanced Step Real-Time Iteration with nonuniform discretization grids. This reduces the computational burden up to 60 % compared to a standard uniform approach, while having only a minor performance loss. All methods are validated on the example of a 9-bus microgrid, which is modeled with a complex differential algebraic equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.