Abstract

Using the conservation of mass concept, a novel controlled flow methodology based on a linear programing problem is developed for computing the optimal flow rates for a multi-exit evacuation network. In an emergency situation, the controlled flow design is able to track the values of the walkway density, the number of occupants in nodes and thus assures that the flow from adjacent sources to the source walkways is at their maximum level. Using the DTSP hall room of Universiti Sains Malaysia as a multi-exit network, a simulation of the flow shows that the source walkways are blocked when there is an uncontrolled flow. Hence, very few occupants can make their way into the intermediate walkways and exits. For the controlled flow, the values of occupant density in the source and intermediate walkways gradually approach the critical density, ensuring a maximum flow. The developed methodology is useful for the architects and disaster management authorities who are concerned with the evacuation of building facilities and can be used as a paradigm for future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.