Abstract

The presence of ecgonine in urine has been proposed as an appropriate marker of cocaine use. Only a few methods have been published for their determination along with cocaine and the rest of its metabolites. Due to their high polarity and consequent solubility in water, these have low recoveries, which is why it is necessary to increase the sensitivity, by the formation of hydrochloric salts or multiderivatization of the analytes or by performing two solid-phase extractions (SPEs), considerably increasing the time and cost of the analysis. This work describes a fast and fully validated procedure for the simultaneous detection and quantification of ecgonine, ecgonine-methyl-ester, benzoylecgonine, nor-benzoylecgonine, m-hydroxybenzoylecgonine, cocaethylene, cocaine, norcocaine, and norcocaethylene in human urine (500μL) using one SPE and simple derivatization. Separation and quantification were achieved by gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) in selected-ion monitoring mode. Quantification was performed by the addition of deuterated analogs as internal standards. Calibration curves were linear in the adopted ranges, with determination coefficients higher than 0.99. The lower limits of quantification ranged from 2.5 to 10ng/mL. The intra- and inter-day precision, calculated in terms of relative standard deviation, were 1.2%-14.9% and 1.8%-17.9%, respectively. The accuracy, in terms of relative error, was within a±16.4% interval. Extraction efficiency ranged from 84% to 103%. Compared with existing methods, the procedure described herein is fast, since only one SPE is required, and cost-effective. In addition, this method provides a high recovery for ecgonine, resulting in a better alternative to the previously published methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.