Abstract

This paper studied favorable low-temperature plasma (LTP) surface treatment modes for Carbon Fiber Reinforced Polymer (CFRP)/Al7075 single-lap joints using complex experimental methods and analyzed the failure modes of the joints. The surface physicochemical properties of CFRP after LTP surface treatment were characterized using scanning electron microscopy (SEM), contact angle tests, and X-ray photoelectron spectroscopy (XPS). The influence mechanism of LTP surface treatment on the bonding properties of CFRP/Al7075 single-lap Joint was studied. The results of the complex experiment and range analysis showed that the favorable LTP surface treatment parameters were a speed of 10 mm/s, a distance of 10 mm, and three repeat scans. At these parameters, the shear strength of the joints reached 30.76 MPa, a 102.8% improvement compared to the untreated group. The failure mode of the joints shifted from interface failure to substrate failure. After low-temperature plasma surface treatment with favorable parameters, the CFRP surface exhibited gully like textures, which enhanced the mechanical interlocking between the CFRP surface and the adhesive. Additionally, the surface free energy of CFRP significantly increased, reaching a maximum of 78.77 mJ/m2. XPS results demonstrated that the low-temperature plasma surface treatment led to a significant increase in the content of oxygen-containing functional groups, such as C-O, C=O, and O-C=O, on the CFRP surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.