Abstract

Proso millet is a gluten-free cereal and is therefore considered a suitable raw material for the manufacturing of foods and beverages for people suffering from celiac disease. The objective of this study was to develop an optimal mashing procedure for 100% proso millet malt with a specific emphasis on high amylolytic activity. Therefore, the influence of temperature and pH on the amylolytic enzyme activity during mashing was investigated. Size exclusion chromatography was used to extract different amylolytic enzyme fractions from proso millet malt. These enzymes were added into a pH-adjusted, cold water extract of proso millet malt and an isothermal mashing procedure was applied. The temperatures and pH optima for amylolytic enzyme activities were determined. The α-amylase enzyme showed highest activity at a temperature of 60°C and at pH 5.0, whereas the β-amylase activity was optimum at 40°C and pH 5.3. The limit dextrinase enzyme reached maximum activity at 50°C and pH 5.3. In the subsequent mashing regimen, the mash was separated and 40% was held for 10 min at 68°C to achieve gelatinisation. The next step in the mashing procedure was the mixture of the part mashes. The combined mash was then subjected to an infusion mashing regimen, taking the temperature optima of the various amylolytic enzymes into account. It was possible to obtain full saccharification of the wort with this mashing regimen. The analytical data obtained with the optimised proso millet mash were comparable to barley wort, which served as a control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.