Abstract
This paper presents the continued efforts in investigating behaviour of low-alloyed low-carbon steel welded joints in the presence of different combinations of multiple welding defects, (undercuts, incomplete root penetration, misalignments). Since these defect combinations can greatly affect the integrity of welded joints, due to significant changes in geometry which are induced by their presence. For this reason, a total of 8 numerical models were made, including four different defect combinations (2 models for each group). This number of models was equal to the number of actual test specimens that were used for tensile test experiments, which also provided the necessary input data (mechanical properties) for each model. The goal was to determine if the two models from each group were sufficiently similar to each other, so that in the future research, they could be replaced by a single, unified model for each defect combination. Comparison was made in terms of stress and strain distribution, and it was determined that three out of four models have nearly identical values, whereas the first group specimens had shown slightly bigger differences, which were still acceptable. Thus, it was concluded that a single representative model could be made for each defect combination group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.