Abstract

Composite materials are increasingly used in high performance structural applications because of their high strength and stiffness to weight ratios together with their significant tailoring capabilities. The stiffness of a monolithic laminate can be expressed as a linear combination of material invariants, one thickness variable, and twelve lamination parameters, which is an efficient alternative to using fibre angles as design variables. However, feasibility constraints originating from the interdependency between lamination parameters must be satisfied to obtain laminates with realistic stiffness properties. Currently, enforcing these feasibility constraints is a computationally intensive task. In this paper we propose to use normalised design variables that inherently map (i.e. correspond) to feasible lamination parameters, effectively removing the need to evaluate feasibility constraints altogether. To this end, linear and B-spline maps of the feasible lamination parameter subspace are proposed and evaluated. Results of 2D and 4D benchmark analyses and optimisation studies suggest that the proposed methodology does successfully provide an efficient means of achieving feasible results at lower computational costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.