Abstract

The increasing use in the aerospace industry of strong, lightweight composite materials in primary structural components promises to substantially reduce aircraft non-pay-load weight, improving fuel consumption and operating profitability. This study explores the extension of composite material to regions of gas turbine engines previously considered too hot for composites with moderate melting points. Throughout the majority of a gas turbine cycle, gas stream temperatures exceed the polymer composite glass transition by a considerable margin. Boundary layer cooling strategies, however, may be adopted in the compression stages to extend the downstream distance that can be constructed using lightweight composites. This paper presents formulation and validation of a numerical model and its use in an optimisation study to develop a systematic process for thermal design of polymer composite structures in ‘warm’ gas streams. Internal vascular and external boundary layer film cooling strategies are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.