Abstract

Austenitic stainless steel is a popular material for its corrosion resistant properties, however it has low hardness which limits its application. Low-temperature carburizing can be used to improve the mechanical properties of the austenitic stainless steel by producing expanded austenite layer. In order to get a high-quality layer and an efficient processing operation, the carburizing process must be optimized. In this research, a Taguchi method was utilized to investigate the effect of processing parameters related to the formation of the expanded austenite layer depth in austenitic stainless steel. Four factors were selected to be optimized namely temperature, gas flow rate, time, and gas composition with three levels each. L9(34) orthogonal array was applied with nine experimental tests to get the diffusion depth value of carbon in the expanded austenite layer. S/N ratio was used to determine the optimum factor combination with nominal-the-better quality characteristic and the most significant factor was obtained by applying the Analysis of Variance. Temperature was found to be the most significant factor with 54.91% contribution. The optimum combination was also successfully defined with temperature at 450°C (level 2), gas flow rate at 15 liter per minute (level 2), time at 12 hours (level 3), and gas composition at 15% CH4 – 5% H2 – 80% N2 (level 3). Clearly, in this study the Taguchi method was proven to be appropriately used as one of robust tools in optimizing the thermochemical treatment process parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.