Abstract
In this paper, we will study optimality conditions of semi-infinite programs and generalized semi-infinite programs by employing lower order exact penalty functions and the condition that the generalized second-order directional derivative of the constraint function at the candidate point along any feasible direction for the linearized constraint set is non-positive. We consider three types of penalty functions for semi-infinite program and investigate the relationship among the exactness of these penalty functions. We employ lower order integral exact penalty functions and the second-order generalized derivative of the constraint function to establish optimality conditions for semi-infinite programs. We adopt the exact penalty function technique in terms of a classical augmented Lagrangian function for the lower-level problems of generalized semi-infinite programs to transform them into standard semi-infinite programs and then apply our results for semi-infinite programs to derive the optimality condition for generalized semi-infinite programs. We will give various examples to illustrate our results and assumptions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.