Abstract
We use some advanced tools of variational analysis and generalized differentiation such as the nonsmooth version of Fermat’s rule, the limiting/Mordukhovich subdifferential of maximum functions, and the sum rules for the Fréchet subdifferential and for the limiting one to establish necessary conditions for (local) properly efficient solutions and (local) isolated minimizers of a multiobjective optimization problem involving inequality and equality constraints. Sufficient conditions for the existence of such solutions are also provided under assumptions of (local) convex/affine functions or L-invex-infine functions defined in terms of the limiting subdifferential of locally Lipschitz functions. In addition, we propose a type of Wolfe dual problems and examine weak/strong duality relations under L-invexity-infineness hypotheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.