Abstract
The goal of the optimal treatment regime is maximizing treatment benefits via personalized treatment assignments based on the observed patient and treatment characteristics. Parametric regression-based outcome learning approaches require exploring complex interplay between the outcome and treatment assignments adjusting for the patient and treatment covariates, yet correctly specifying such relationships is challenging. Thus, a robust method against misspecified models is desirable in practice. Parsimonious models are also desired to pursue a concise interpretation and to avoid including spurious predictors of the outcome or treatment benefits. These issues have not been comprehensively addressed in the presence of competing risks. Recognizing that competing risks and group variables are frequently present, we propose a doubly robust estimation with adaptive L1 penalties to select important variables at both group and within-group levels for competing risks data. The proposed method is applied to hematopoietic cell transplantation data to personalize the graft source choice for treatment-related mortality (TRM). While the existing medical literature attempts to find a uniform solution ignoring the heterogeneity of the graft source effects on TRM, the analysis results show the effect of the graft source on TRM could be different depending on the patient-specific characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.