Abstract

We consider a Brownian particle in a ratchet potential coupled to a modulated environment and subjected to an external oscillating force. The modulated environment is modelled by a finite number N of uncoupled harmonic oscillators. Superdiffusive motion and Levy walks (anomalous random walks) are observed for any N and for low values of the external amplitude F. The coexistence of left and right running states enhances the power α from the time dependence of the mean square displacement (MSD). It is shown that α is twice the average of the power of the separated left and right MSDs. Normal random walks are obtained by increasing F. We show that the maximal mobility of particles along the periodic structure occurs just before superdiffusive motion disappears and Levy walks are transformed into normal random walks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.