Abstract

The Skorokhod embedding problem is to represent a given probability as the distribution of Brownian motion at a chosen stopping time. Over the last 50 years this has become one of the important classical problems in probability theory and a number of authors have constructed solutions with particular optimality properties. These constructions employ a variety of techniques ranging from excursion theory to potential and PDE theory and have been used in many different branches of pure and applied probability. We develop a new approach to Skorokhod embedding based on ideas and concepts from optimal mass transport. In analogy to the celebrated article of Gangbo and McCann on the geometry of optimal transport, we establish a geometric characterization of Skorokhod embeddings with desired optimality properties. This leads to a systematic method to construct optimal embeddings. It allows us, for the first time, to derive all known optimal Skorokhod embeddings as special cases of one unified construction and leads to a variety of new embeddings. While previous constructions typically used particular properties of Brownian motion, our approach applies to all sufficiently regular Markov processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.