Abstract

SUMMARYIn this paper, a novel optimal torque distribution method for a redundantly actuated parallel robot is proposed. Geometric analysis based on screw theory is performed to calculate the stiffness matrix of a redundantly actuated 3-RRR parallel robot. The analysis is performed based on statics focusing on low-speed motions. The stiffness matrix consisting of passive and active stiffness is also derived by the differentiation of Jacobian matrix. Comparing two matrices, we found that null-space vector is related to link geometry. The optimal distribution torque is determined by adapting mean value of minimum and maximum angles as direction angles of null-space vector. The resulting algorithm is validated by comparing the new method with the minimum-norm method and the weighted pseudo-inverse method for two different paths and force conditions. The proposed torque distribution algorithm shows the characteristics of minimizing the maximum torque.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.