Abstract

In generative process planning, the sequence of machining processes is decided according to the specifications of parts, such as tolerance values. However, in order to obtain the minimal manufacturing cost, the machining process sequence needs to be considered before tolerances are assigned. It is therefore difficult to assign optimal tolerances so that a minimum manufacturing cost is achieved. This paper presents an iterative approach for reallocation of tolerance within the given functional constraints to minimize the manufacturing cost. With the given values of tolerance and corresponding process sequences, which are derived from a handbook or a designer's experience as initial inputs, each iteration of tolerance re-allocation tries to improve the total cost by shifting tolerances along the different processes in the current sequence. The re-allocation problem is formulated as a mixed integer nonlinear programming problem. The Lagrange Multiplier method has been used to solve nonlinear programming, and an exhaustive search method has been adopted to guarantee the global optimum in solving the zero-one algorithm. A prototype system has been implemented in an object-oriented programming environment and a case study is presented to demonstrate the capability of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.