Abstract

The viscoelastic stiffness of asphalt concrete is commonly represented using relaxation modulus and dynamic modulus, which are functions of loading time and loading frequency, respectively. They are typically measured via experimental testing whereby only one of the moduli is determined, and interconversion techniques can be used to obtain the other modulus if needed. Although exact approaches exist for pavement modulus interconversion, they can be difficult to implement in practice, and approximate conversion techniques have therefore been developed for conventional use. A popular approach is to approximate a direct relationship between the time and frequency domains via an equivalency factor, but there is no apparent consensus on its proper value. In this paper, a new numerical technique is applied to experimental data to ascertain the optimal value of the time-frequency equivalency factor. Approximate conversions from dynamic modulus to relaxation modulus are conducted using the optimal factor, and results are compared to popular alternative approaches. The optimal factor is determined to be with 95% confidence. Using the mean value of 0.0673 produced conversion errors of 1.41% on average among 30 samples of hot mix asphalt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.