Abstract

In this paper, we solve the optimal thermostat programming problem for consumers with combined demand ($/kW) and time-of-use ($/kWh) pricing plans. We account for energy storage in interior floors and surfaces by using a partial-differential model of diffusion. We consider two types of thermostats: the first can be programmed to vary continuously in time and the second is limited to four constant set-points. Thermostat settings were constrained to lie within a desired interval. Numerical testing shows that the resulting algorithm can reduce monthly electricity bills by up to 25% in the summer with average savings of 9.2% over a variety of building models by using prices from Arizona utility Salt River Project. Furthermore, we examine how optimal thermostat programming affects optimal electricity pricing by using a simplified model of utility generation costs to determine the optimal ratio of demand to time-of-use prices. Our results show that pricing electricity at the marginal cost of generation in this scenario is suboptimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.